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We discuss the implementation of Spectral Multiscale Coverage (SMC) based multi-vehicle control and
coordination for coverage and search missions by autonomous UAVs. The SMC algorithm gives rise to multi-
scale vehicle trajectories leading to efficient coverage of a given area and thereby making it useful for search
algorithms that are robust to sensor errors and terrain uncertainties. We provide a functional summary of
the SMC framework and address its practical implementation. The practical feasibility of the SMC approach
is demonstrated via several coverage problems using high fidelity software-in-the-loop (SIL) simulations and
experimental flight tests conducted using an electric helicopter.

I. INTRODUCTION

A variety of coverage problems arise in applications involving autonomous vehicles. A few such applications
where coverage control comes into play are search and tracking missions, exploration and environmental monitoring.
The problem of searching a large area to find an unknown number of targets is challenging especially when the field
of view of one sensor is much smaller than the entire search area and when there is uncertainty in terrain and sensor
measurements. This path planning problem has been addressed by several research groups and the various solution
approaches are briefly discussed below.

There are various types of coverage problems. The first type of coverage problem is that of locational optimization
and algorithms that solve the locational optimization problem are referred to as static coverage algorithms. Static
coverage algorithms are relevant when the collective sensor footprint is comparable to the domain size and the problem
is to place the sensors in an optimal configuration so as to maximize the detection probability of some event. Static
coverage problems are typically addressed using Voronoi partition based algorithms (e.g. Lloyd algorithm) and their
numerous variants. See Ref. 1 for a review on static coverage algorithms and the distributed and asynchronous
implementations of the Lloyd algorithm for mobile sensing networks.

The focus of this paper is on dynamic coverage problems and also their practical implementation for UAVs. Dy-
namic coverage problems refer to situations where the collective sensor footprint is small compared to the size of the
environment and the motion of the sensors must be designed so that they visit or come close to visiting every point
in the environment. This path planning problem has been addressed by both computer scientists and control theorists.
For a review of results from the robotics community see Ref. 2 where the author describes both heuristic and com-
plete algorithms based on cellular decompositions to ensure complete coverage of a domain. For control theoretical
approaches to coverage problems, see Ref. 3 and our recent work in Refs. 4 and 5.

A special type of dynamic coverage problem arises when the environment to be covered changes with time. Ex-
amples are when sensors have to move to cover a moving domain or search for a stationary or mobile target. For
the search of a target, the uncertain position of the target may be specified in terms of a probability distribution that
evolves in time according to the sensor observations and target dynamics. Design of uniform coverage dynamics for
sensors in search missions is crucial to minimize the average time to detect a target. A variety of researchers have
addressed the problem of trajectory design for search missions. For an information-driven framework for coordinated
control of a network of unmanned vehicles, see Ref. 6. In Ref. 7, the authors describe a model predictive approach
that optimizes the routes of agents searching for a mobile target. Refs. 8 and 9 describe frameworks for cooperative
search using UAV teams.
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Burlington, CT, USA. A. Surana, S. Bajekal and K. R. Chevva are with United Technologies Research Center (UTRC), East Hartford,
CT, USA. mathewga@utrc.utc.com, kannan@nodein.com, suranaa@utrc.utc.com bajekas@utrc.utc.com,
chevvakr@utrc.utc.com
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In this paper, we describe and implement a Spectral Multiscale Coverage (SMC) framework for multi-vehicle
control and coordination for search and tracking applications. This approach differs from other related approaches in
that it is based on the notion of ‘uniform coverage’. By ‘uniform coverage’, we roughly mean that the sensor footprints
are uniformly distributed or evenly spaced throughout the domain. In a classic book on the theory of search,!'® the
author describes the advantages and difficulty of generating a sensor track that is uniformly distributed. To the best of
our knowledge, there is no other framework that uses uniformly distributed sensor tracks to perform search missions -
which is the subject of this paper.

The multiscale coverage metric that quantifies the uniformity of coverage is described in Refs. 4 and 5. The SMC
algorithms leads to sensor dynamics so that large scale features are detected first followed by smaller and smaller
features. This leads to uniform coverage dynamics for the mobile sensors such that the amount of time spent observing
a region is proportional to the probability of finding a target in it. It has been demonstrated in Ref. 11 that in the
presence of uncertainty in terrain and sensor observations, search strategies based on the SMC algorithm outperform
lawnmower-type search strategies by a factor of 2. For moving targets, the probability distribution specifying the
uncertainty in target state evolves in time according to the target dynamics. An extension of the SMC algorithm -
Dynamic Spectral Multiscale Coverage (DSMC) - has been developed for the search and tracking of mobile targets.!?

In our initial studies, the sensor dynamics was restricted to that of a point mass model. We recently extended the
SMC approach for a Dubins vehicle model'? which has been found to be an adequate abstraction for motion planning
problems involving unmanned vehicles governed by complicated and constrained dynamics.!* !> The work in Ref. 13
also describes an adaptive search methodology based on combining SMC control with estimation/decision theoretic
methods, namely: Sequential Probability Ratio Test (SPRT) and Recursive Least Square estimation. This renders an
efficient method for searching for an unknown number of stationary targets in a manner that is is robust to sensor and
terrain uncertainties, and Automatic Target Recognition (ATR) algorithm errors (i.e. false alarm, missed detections).

The objective of this paper is to present the experimental implementation of the SMC approach described in Ref.
13. We review the SMC based multi-vehicle control and coordination framework, and address some of the issues
related to the experimental implementation. Specifically, we show how the SMC control can be coupled with a com-
mercially available off the shelf (COTS) autopilot. We also conduct a detailed software-in-the-loop (SIL) assessment
of the SMC framework using a high fidelity simulation environment. We also present results from experimental flight
tests with an electric helicopter showing the practical feasibility of the SMC based coverage and search.

The rest of the paper is structured as follows. In Section II, we summarize the SMC feedback control laws for dif-
ferent vehicle abstractions including the Dubins model. We also review the SMC based adaptive search methodology
which accounts for sensor and ATR errors in target detection. In Section III, we describe the details of implementation
of the coverage control on a commercially available off the shelf autopilot, and also present a boundary control to keep
the vehicle within a prescribed domain. Section IV provides details of software-in-the-loop (SIL) and experimental
implementations. We also outline the different test scenarios. In Section V we present the SIL and experimental flight
test results for a Maxi Joker helicopter, demonstrating the practical feasibility of the Spectral Multiscale Coverage
framework. We give some concluding remarks in Section VI, and point to some future research directions.

II. Spectral Multiscale Coverage (SMC): An Overview

In this section, we review the SMC framework that is discussed with more detail in Refs. 5, 12 and 13.

II.A. Coverage Metric

The SMC algorithm was initially developed for designing uniform coverage dynamics for the search of stationary
targets in complex terrains.*> A key component of the SMC algorithm is a metric for uniformity of coverage which
was motivated by ergodic dynamical systems theory. Consider N sensors searching a rectangular region U C R? with
a given search prior u(x). The prior represents the probability of finding a target at a given location x € U. Let
the locations of the sensors at time ¢ be given by z/(t) C R?,j=1,---,N. The sensor locations evolve according to
some controlled dynamic model. To keep track of the points that the sensors have already visited, we use a coverage
distribution generated by the sensor trajectories upto time ¢, which is defined as:

G(x) = li/'ta(x—zf(mdr 0
! Nt = o ’

where it has been assumed that sensors have an infinitesimal footprint represented by the Dirac delta distribution &
(This can be replaced by an arbitrary footprint). The coverage metric (given by a Sobolev space norm of negative
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with f; being the Fourier basis functions that satisfy Neumann boundary conditions on the domain U, k is the wave-
number vector and < -,- > is the standard inner product (for details, see Ref. 5). ¢(¢) quantifies how much the time
averages of the Fourier basis functions along the sensor trajectories deviate from their spatial averages, but giving
more importance to large-scale modes than the small-scale modes.

II.LB. SMC Control

Given a model for the sensor dynamics, we use a receding horizon approach to maximize the rate of decay of the
coverage metric. The control action at any time 7 is obtained by solving a finite horizon optimal control problem over
a short time horizon [t,7 + At] with the objective of attaining the highest rate of decay of the coverage metric (2) at the
end of the horizon. The feedback law is derived in the limit as the size of the horizon A goes to zero and the resulting
feedback control is applied at every time instant ¢. The cost functional over [¢,# + Af] can be expressed as:

C(1,A1) = D(t+Ar) = Y ApSi(r + Ar)Wi (1 4 Ar), ©)
K
where,
o) = ;;Ausk §N2r2¢2(t)7 ™
Se(t) = (c(t) — )Nt (8)
Wi(t) = S'k(r):ka@f(t))fNuk. ©)
=1

We review SMC control laws for different vehicle abstractions - namely point mass, first order and second order
Dubins vehicle models. Trajectories generated based on a point mass model can have infinite turn rates and therefore
is not suitable for practical applications as most unmanned vehicles have turn rate constraints. On the other hand, a
Dubins vehicle is a vehicle moving with bounded turn rate on a plane'® and is considered an adequate model (see Refs.
14,15 and references therein) from the perspective of path planning for unmanned vehicles.

II.B.1. Point Mass Model
First order dynamics for a point mass model is described by
#=uw(r), j=1,--,N. (10)
A closed form control law u/ (1) at time ¢ that minimizes (6), subject to the speed constraint,
[0/[] < Vi, (11)

can be derived in the limit as A+ — 0. This control law is given as

B/(1)

W) = ~Vnar g

12)
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where, .
B/(1) = ﬁg; = L ASUOVAE ), (13)

Figure 1 shows samples trajectories generated for a point mass model with the SMC control (12).
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Figure 1. Sensor trajectories generated by the SMC algorithm for a point mass model and for a uniform prior on an irregular domain. The coverage control
gives rise to multiscale sensor trajectories. The figure on the left is a snapshot of the trajectories at a time earlier than that for the figure on the right. As seen,
the spacing between trajectories decreases as time proceeds. These figures are taken from Ref. 5.

II.B.2.  First Order Dubins Model

Consider a first order Dubins vehicle model, whose dynamics is restricted to a plane and is governed by

v (t)eiej

6/ = o), (14)

7’

where ¢® = (cos(8),sin(8))’ denotes the unit vector in the direction of the vehicle heading, v/ is the speed, 6/ is the

yaw angle and @’ is the yaw rate. For simplicity, we assume that all vehicles are subject to the same speed and turn
rate constraints. i.e.,

Vinin <V < Vimax,  Omin < @' < Opax. (15)

The optimal control law takes the classical bang-bang form and in the limit as the horizon At — 0, the control law is
given as:

Vmin if TY(1) >0

Vmax Otherwise,

W) = (16)

and
i =] Onn i Tol)=0 a7
Wpnax  Otherwise,
where,
Ij(t) = B(r)cos®(t)+Bj(t)sin6/ (1) (18)
Th(t) = —Bi(t)sin®(r)+Bi(t)cos 67 (r), (19)

and (BY,B}) is as defined before in (13). Figure 2 shows uniform coverage trajectories generated for the Dubins vehicle
model with different bounds on the turn-rates. The plot on the left is that for a low turn-rate (high turn radius) and
the plot on the right is that for a high turn-rate (low turn radius). Note that due to the bang-bang nature of the SMC
control, the speed and angular rate commands would be discontinuous and hence difficult for a physical vehicle to
follow. However, the position and yaw variables are continuous and one could issue them as commands to the vehicle
autopilot. To avoid the discontinuities in the speed and angular rates, one can consider a second order Dubins model
as described next.
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Figure 2. Uniform coverage trajectories generated for Dubins vehicle model with different turn-rates. The search prior u is constant within the shaded region

and zero outside.

I1.B.3. Second Order Dubins Model

A second order Dubins vehicle model includes speed and angular velocity dynamics as shown below:

= v (t)eiej
voo= Fi(r)
6/ = o)
o = T/(r).

In addition to the constraints in (15) we have thrust and torque constraints. i.e.,

Fmin S Fj S quxv Tmin S Tj S Tmax-

We define the following constants

_ Vmin + Vmax

Va = ) ) Vd
Wpin + Opmax
W, = - 5 Wy =

— Vmax — Vmin

) )
Omax — Wmin

2 )

(20)

2L

and then introduce the variables o/ and B/ to eliminate the constraints on the speed and yaw rate. The vehicle dynamics

is rewritten as

o= Vi)V

v = vgcos(a’(t))F/(t)
o = F1)

6/ = ol(r)

& = aucos BT
pl= T,

with initial conditions for &/ and B/ being

For this model, the cost functional over the horizon [t,f + At] that we optimize for is written as:

Vd

C(t,At) = i C—ZV [V (t+Ar)]

Jj=1
1+AL ¢

2

o (0) = sin”! (VJ(O)V) ,B(0) = sin~! (“’](0)“’> .

(7]

N i 2 .
+,Z1/t - [0/ ()] dT+®(t + A1),
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where ¢y, ce > 0 are damping coefficients that penalize the magnitudes of the speed and turn-rates respectively. The
coverage control law in the limit as At — 0 (as described in Ref. 13) takes the form:

Epin if Ti(t)>0

Fly={ ™ (24)
Fuax  otherwise,
and
. Toin if Th(t) >0
7oy = Tmn 1 Tol)= (25)
Tax Otherwise,
where
(1) = [e,v/ + Blcos(6)/) + B]sin(67)] cos(a/), (26)
(1) = [co®’ —v/B]sin(87) + v/ B} cos(67)] cos(B) (7)

In the above equatiOHS, Fin = min/Vda Foax = max/Vd; Thin = min/wd and Ty = max/wd«

II.C. SMC based Adaptive Search for Stationary Targets

In this section we summarize the SMC based adaptive search algorithm for search of an unknown number of targets
in a region of interest using a team of mobile sensors. In order to make the search robust to sensor uncertainties and
Automatic Target Detection algorithm errors (i.e. false alarm, missed detections), the SMC control law derived in the
previous section was combined with decision and estimation theoretic techniques.!?> As new targets are discovered,
the Sequential Ratio Probability Test (SPRT), Recursive Least Squares (RLS) estimation and Bayesian updates are
used to quantify the current uncertainty in target detection, location and classification (as adversarial/non adversar-
ial), respectively. Sensors should spend more time in locations where there is higher probability in ascertaining the
presence/absense of a target, and where there is associated higher uncertainty in their location and classification. This
uncertainty is used to update the search prior so as to balance exploitation (to reduce uncertainty in state of already
discovered potential targets) and exploration (to discover new targets). More precisely, let u° denote the initial search
prior. We assume that the uncertainty in the location of a discovered target can be represented by a Gaussian distribu-
tion. When a targets falls within the sensor range, a random sensor measurement is generated and the search prior is
adapted as

w(x) = wiplx)+ ) wiki(x), (28)

i=1

where n; is the number of targets that have been detected so far and
1 (%) =G (x:%,, F), (29)

where ¢ (x;X, %) is a multivariate Gaussian with mean X and covariance matrix X. Here, X! is the target location estimate
with covariance P, at time ¢, which is computed using the Recursive Least Squares estimator. The weights w} represent
target prioritization, and are chosen as

wi=t(P) x (1+(p})) (1+(x})), (30)

where J#(p) = —plogp — (1 — p)log(1 — p) is the entropy, 7! is target detection probability (computed based on
SPRT) and p! is target classification probability (computed based on Bayesian updates). The weights w! are normalized
so that they add up to one at all times. Additionally, one can apply appropriate thresholds for each term above, so that
the target weight is set to zero, once the uncertainty in its state falls below these thresholds. The weight w® > 0 can be
used to control the tradeoff between exploration and exploitation.

III. Practical Considerations

IILA. Boundary Control

In practical implementations, due to the vehicle dynamic constraints (specifically the turning radius constraint), the
vehicle is not guaranteed to remain within the prescribed region U under the SMC control described in the previous
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section. Therefore, to bring back the vehicle into the prescribed search region whenever it crosses the boundary, we
use the same controls as in (24) and (25), but with the variables I'J(¢) and I';,(¢) redefined as

TU(1) = [eov! + (27 — 27) - e | cos(al), 31)
(1) = [co®! + (27 — 274) - iei®| cos(B), (32)
where 7 is the mid-point of the domain U. This control is derived using a cost-function similar to that in (23), but

which penalizes the distance from the mid-point instead of the rate of decay of the coverage metric.

III.B. Implementation with an Autopilot

In this section we describe the implementation of the coverage control described in the previous sections on a commer-
cially available off the shelf (COTS) autopilot. In our setting, we had the capability to command a time parameterized
trajectory to the autopilot. Let the vehicle state be represented as S(¢) = (X,Y,0,X,Y,0,Z,w,0,Z,\,¢), where
we note that we have first indicated the states which are present in the Dubins model and then the remaining ones
(Z,w,¢,Z,\,¢) which correspond to altitude, pitch, roll and their rates respectively. We assume that the vehicle state
estimate S() is available as feedback from the autopilot. Using a subset of the states (X (¢), ¥ (¢), é,f( , f/, )’ from the
estimate S(t), the Dubins model (22) is initialized and the Dubins vehicle trajectory is computed under the SMC con-
trol (24) and (25) over a desired period of time [¢,#+T7]. Let Sy (¢) = (z(¢), 0(t),vcos(8(t)),vsin(0(¢)),8(¢)) . € [0, T]
be the Dubins vehicle trajectory, then the full state trajectory is constructed as:

Sa(t—1)
Zq

, Tet,t+T], (33)

S O o O

which is commanded to the autopilot. Note that here we have assumed that the vehicles operate at a desired constant
altitude Z; which can be taken to be different for different vehicles for collision avoidance. Also the commands for
the pitch, roll and their rates are set to be zero.

IV. SIMULATION AND EXPERIMENTAL SETUP

In this section we describe the setup for the SIL and flight tests. In all our tests, we consider one Maxi-joker with
a simulated camera in a terrain with virtual targets. We assume that the simulated visible spectrum camera is gimbal
stabilized and always looks downward despite vehicle roll/pitch. Also, the vehicle flies over obstacles, and hence there
is no issue of obstacle avoidance.

The flight tests were conducted at a baseball field approximately 450 ft long and 350 ft wide, and surrounded by a
canopy. Fig. 3 shows an aerial photo of the experimental test site. The terrain map for the same site was used in the
SIL tests. For the convenience of the safety pilot, the search region was restricted to a 200 ft x 200 ft square region
similar to that shown by the green box in Figure 3. The vehicle was brought back inside the search region using the
boundary control as described in III.A whenever the vehicle exited the search region.

1V..1. Test Cases

We list the different scenarios used for the SIL and flight tests. These cases represent some key canonical scenarios
encountered in practice.

a) Coverage: We test the SMC algorithm for the following priors.

i) Uniform prior: In this scenario, the search prior u is uniform within the search region shown in Figure 3.
This is useful when there is no prior information about the target locations.

ii) Prior with a bimodal distribution: Here the search prior u is an equally weighted sum of two Gaussian
distributions with different peak magnitudes and spread as shown in Fig. 4a. In this example, the vehicle
should spend roughly equal time close to the peaks of the two Gaussian distributions.
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Figure 3. Test site used in SIL and experimental flight tests.

Prior with a bimodal distribution

50 100 150 200 250
x(®)
(a) Prior with a bimodal distribution. The  (b) Uniform prior on an irregular domain.
prior is the average of two Gaussian distri-  The prior is zero within the gray shaded re-
butions restricted to the green square box  gions and constant outside.

shown in Figure 3.

Figure 4. Priors used in coverage test scenarios.

iii) Uniform prior on a non-convex domain: As seen in Figure 4b, the prior is set to zero in the gray areas
which may represent buildings or foliage regions, and set to a constant non-zero value outside the gray
areas within the green box.

b) Search of stationary targets: In this experiment, we test the adaptive search algorithm as described in II.C with
virtual targets. Here, one starts with an initial prior, and the prior is adapted as new targets are detected. Target
locations are drawn randomly with a uniform distribution.

We first describe the software-in-the-loop implementation. The results of these simulation studies were used to guide
the selection of the algorithm parameters used in the experimental validation described in Section V.B.

IV.A. Software-in-Loop (SIL) Implementation

The SIL layout is as depicted in the lower box in Fig. 5. The Georgia Tech UAV Simulation Tool (GUST) simulation
environment was used to simulate helicopter dynamics and associated navigation filters and trajectory tracking flight
controller.'”-!8 GUST was used in closed-loop with the SMC trajectory generation algorithm to replicate as many
aspects of the actual flight test as possible. The helicopter simulator is a detailed closed-loop helicopter model that
includes aerodynamics, actuator models, implemented flight controller and associated modes, software interfaces and
communication delays. Trajectory commands generated by the SMC planner were transmitted via UDP packets to
multiple instances of the simulator. The actual vehicle state, returned by the simulator, is fed back into the planner in
order for it to adapt and update the trajectory command at regular intervals (at the replanning frequency).
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Maxi Jol-:e_::

Figure 5. Experimental setup. Also shown in the box is the SIL setup.

TEST INPUT DATA Each SIL test run requires the search prior over the terrain map, the parameters for the Dubins
vehicle model used to generate trajectory commands, and a number of parameters that determine the behavior of the
SMC algorithm. Below we list these parameters along with their nominal values.

a)
b)

¢)

Maximum Flyable Time: 7y = 10 min and was limited by battery life.

Parameters for Dubins vehicle model:

-Max/Min Speed: vy,;;, = 5ft/s and v;,,qr = 10ft/s.

-Max/Min Yaw Rate: @,,;, = —0.3 rad/s and ®,,,, = 0.3rad/sec.
-Max/Min Linear Acceleration: Fy;,, = —7ft/s? and Fjq, = 7ft/s2.
-Max/Min Angular Acceleration: T}, = —0.5 rad/s® and T}, = 0.5rad/s”.
-Damping Coefficients: ¢, = 0.01 and ¢, = 0.25.

Search Prior: 1 was defined on a uniform grid of size Ny X Ny, so that the spatial discretization is
Xinax — Ximin Ynax — Yomin
A= ——, Ay = ——. 34
N Y N, (34)

The same grid would be used to represent the coverage distribution C;(.) and to compute its Fourier coefficients.
For the SIL and experimental tests, we set Ny = N, =50. The Fourier coefficients were computed for K € 7’ =
[0,1,---,50]%.

Sensor Parameters and Automatic Target Recognition (ATR) algorithm abstraction: The sensor was as-
sumed to be a gimbal stabilized visible spectrum camera, so that it always looked down despite the vehicle
roll/pitch.
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-Field of view (FOV): Since the camera always look straight down, we assume that the camera has a circular
FOV with a radius R = 25 ft.

-ATR algorithm abstraction: We assume that each vehicle has an onboard ATR algorithm for target detection
and classification. For the purpose of this paper, we use an abstraction of the ATR algorithm in terms of its
performance characterized by: probability of target detection p,; and sensor noise. When a target falls within the
circular FOV of the sensor, a random sensor measurement is generated with a probability p; = 0.7. To account
for errors in the sensor measurements of the target location, we add a zero mean Gaussian noise with covariance
2520 . . . .
Os = 0 252 to the true target location. We assume that each target is adversarial or non-adversarial.
The classification probability for a target (probability of it being adversarial) is updated using Bayesian updates
as described in Ref. 13.

-Overall probability of Missed Detection: The requirement on the overall probability of missed detection Fy.q
used to set the thresholds in SPRT was set to 107>, For details on the computation of thresholds for SPRT, see
Ref. 13.

TEST OUTPUT DATA  For the duration of each test run we record both the actual and commanded vehicle states and
the associated time stamps. For the adaptive search test case, the target detection and classification probabilities, and
the target location estimate and covariance are recorded for post-processing and performance visualization.

IV.B. Experimental Implementation

The SMC approach was validated through flight tests using a Maxi Joker 3 RC electric helicopter. The Maxi Joker 3
variant used in the flight tests had a flybar with a torque tube driven tail. The helicopter has a gross weight capability
of 20Ib with a flight time of approximately 10 minutes. A schematic of the experimental set-up is shown in Fig. 5.
An onboard embedded processing board hosts a trajectory tracking controller that receives trajectory commands for
the current control horizon from the ground control station via a dedicated radio datalink. The ground control station
executes the SMC planner to generate the trajectory commands. The datalink also relays the current vehicle state and
actuator and sensor status as feedback to the GCS for the SMC planner to compute the new trajectory command. In the
event of an emergency, a human safety pilot can override and take over control of the vehicle via a dedicated datalink.

V. RESULTS

In this section we describe the results obtained for the coverage and search demonstrations in the SIL and flight
tests.

V.A. SIL Tests

For SIL testing, we mainly focused on the coverage problem. Recall that for uniform coverage of a prior u, the SMC
controller generates trajectories which sample the prior uniformly. Figures 6 and 7 show the SMC trajectories for the
two priors defined in Figures 4a and 4b respectively. For the prior with a bimodal distribution, as expected, the vehicle
spends most of the time close to the two peaks of the two Gaussian distributions (with few transitions). This is because
the vehicle spends more time resolving areas with higher probability of finding a target. For coverage of a uniform
prior on a non-convex domain, the vehicles spend most of the time in the free areas between the foliage regions, where
the prior is non-zero. For SIL demonstration of adaptive search of stationary targets, we refer the reader to Ref. 13.

V.B. Flight Tests
V.B.1. Coverage Tests

The first test was for a uniform prior in the search region shown in Figure 3. Figure 8 shows the actual Maxi-Joker
trajectories. Also shown are the commanded and actual values for the position of the helicopter. It is clear from these
figures that the Maxi-Joker can accurately track the SMC trajectories generated based on a Dubins model with suitable
parameters. Figure 9 show Maxi-Joker trajectories for the prior with a bimodal distribution as shown in Figure 4a. As
can be seen, the trajectories in Figure 9 are very similar to the trajectories in Figure 6 obtained for the SIL tests 2.

In the figures for the last two experimental flight tests, the search region is similar to that used in the SIL tests, but shifted to the left by S0ft.
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Figure 6. SIL demonstration of coverage of the prior with a bimodal distribution as shown in Figure 4a.

Figure 7. SIL demonstration of coverage of a uniform prior on a non-convex domain as shown in Figure 4b.

Man Joker Trajectary

Command position

09- Actual position

08

a7

06

X
rajectories of the Maxi-Joker obtained (b) Tracking of position: The figure shows the x,y co-
flight test site for coverage of a uniform prior. ordinates of the vehicle in dimensionless units. The red

curve is the commanded position and the blue curve is ac-
tual helicopter position. As can be seen, the commanded
and actual positions are very close to each other.

Figure 8. Experimental demonstration of coverage for a uniform prior.
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oker trajectory obtained in the experi-  (b) Tracking of position: The figure shows the x,y co-
ment for coverage of the prior with a bimodal dis-  ordinates of the vehicle in dimensionless units. The red
tribution as shown in Figure 4a. curve is the commanded position and the blue curve is ac-
tual helicopter position.

Figure 9. Experimental demonstration of coverage for a prior with a bimodal distribution.

V.B.2. Adaptive Search Tests

For the adaptive search test, we assumed that there were 4 stationary targets. Two of the targets are to be classified
as adversarial and two of them are to be classified as non-adversarial. The initial search prior was a uniform prior
within the search region. Figures 10a-e show the Maxi-Joker trajectories and the detected targets with the associated
uncertainty in their position. As the Maxi-Joker explores the domain, all 4 targets are eventually discovered, and the
uncertainty in all target locations shrinks to almost zero.

@ ©

Figure 10. The left figure shows the Maxi-Joker trajectory obtained for adaptive search. The figures on the right show the detected targets together with the
Maxi-Joker trajectory. The size of the ball around each discovered target is proportional to the uncertainty (trace of covariance) associated with the target
location. The gray circle denotes the sensor FOV.

VI. CONCLUSIONS

In this paper we have demonstrated for the first time the practical feasibility of Spectral Multiscale Coverage and
its application to search missions. We provided the algorithmic details for the implementation of SMC and illustrated
the approach through SIL tests in several scenarios. We also successfully flight-tested the SMC approach on a single
Maxi Joker 3 RC helicopter in an outdoor environment with virtual terrain, virtual targets and simulated sensors. This
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preliminary successful experimental validation of the SMC approach provides promising evidence for the approach to
be of practical value in Intelligence, Surveillance and Reconnaissance applications.

In the future it would be desirable to couple the SMC algorithm with perception algorithms for target detection and
geolocalization, and test with real targets. Along similar lines, demonstrating the SMC approach in a multi vehicle
setting would be desirable. This would require dealing with collision avoidance issues. Refinement and extension
of the SMC approach to deal with such contingencies will be the subject of future development efforts and technical
publications. Another related area of future research is to study human operator collaboration with SMC to improve
the coverage/search performance and reliability.
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