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Abstract— We propose multiscale metrics to capture the qual-
ity of coverage by a static configuration of agents. This metric is
used for the locational optimization of sensor networks. Agent
configurations that minimize the multiscale coverage metric are
an alternative to the well-known centroidal voronoi tesselations.
Other applications include quantization and clustering analysis.
We demonstrate the performance of the algorithm on various
examples.

I. INTRODUCTION

Sensor deployment and placement is an important problem
in many applications like surveillance and environmental
monitoring. For surveillance problems, it is desirable to have
the sensors uniformly cover an area under surveillance so that
a threat (or target) can be detected with a high probability.
For environmental monitoring problems, it is desirable to
have the sensors uniformly placed so that various spatially
distributed elements like temperature and pressure fields can
be monitored with a high degree of resolution. Sensor place-
ment problems for these sort of applications fall under the
subject of locational optimization. Locational optimization
has been studied under a variety of contexts from the spatial
distribution of resources to the territorial behavior of animals
(see [1] and [2]). Locational optimization also plays a role
in applications like quantization and clustering analysis.

The term ’coverage’ can have slightly different interpre-
tations. We differentiate between ’static’ coverage and ’dy-
namic’ coverage. Static coverage problems refer to problems
where we are interested in finding a stationary configuration
of sensors that are optimal in terms of the quality of service
they provide. Dynamic coverage problems refer more to
the path-planning problem for mobile agents so that they
explore an area completely. The focus of this paper is on
’static’ coverage. The ’dynamic’ coverage problem has been
addressed in [3] and [4].

The Lloyd algorithm [5] is a classical approach to the
locational optimization problem. The Lloyd algorithm is
an approach to generate centroidal voronoid tesselations
(CVTs). See [1] for an extensive review on the applications
and analysis of CVTs. Also see [6] and [7] for a review
on the application of Voronoi-based methods for coverage
control of sensor networks. For distributed and asynchronous
implementations of the Lloyd algorithm see [8] and [9].

In this paper, we borrow ideas from our previous work in
[3], [4], [10] and [11] to capture the quality of coverage by
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a static configuration of agents . We use the simple idea that,
for uniform coverage, the fraction of the number of agents in
any set must be proportional to the probability of detecting an
event (or finding a target) in that set. This concept of uniform
coverage can be related to concepts in sampling theory where
discrepancy measures are used to check whether a finite
number of samples are a good representation of a probability
distribution [12].

The rest of the paper is structured as follows. In Section
II, we discuss the metrics used to quantify the quality of
coverage of a network of agents. In Section III, we talk about
configurations that minimize the coverage metric and the
corresponding necessary conditions for optimality. In Section
IV, we talk about a continuous time descent law for sensor
deployment and show its application to a variety of examples.
In Section V, we extend the coverage control algorithm
for agents with Dubins vehicle dynamics. In Section VI,
we demonstrate how the same coverage algorithm can be
effectively used for uniform placement of agents on the
boundary of an environment. In Section VI, we conclude
with a discussion of some open issues related to the proposed
coverage algorithm.

II. MULTISCALE COVERAGE METRICS

The agent positions are given as x j ∈Rn for j = 1,2, ...,N,
where n is the dimension of the space. In this paper, we
focus on two-dimensional coverage problems (i.e., n = 2).
The set of agent locations is denoted by {x j}= {x j : for j =
1,2, ...,N}. The objective is to sample (or cover) a probability
distribution µ with the N available agents. We assume that µ

is zero outside a rectangular domain U ⊂Rn. Note that there
are no restrictions on the shape of the support of µ within
U . First, we need to define appropriate metrics to capture
the quality of coverage by an agent configuration {x j}. The
locational optimization problem is solved by optimizing for
these coverage metrics.

A. Coverage metric based on spherical integrals

Let B(y,r) be the spherical set of radius r with center at
the location y. i.e., B(y,r) = {z : ‖z− y‖ ≤ r}. Let d(y,r) be
the fraction of the number of agents in the set B(y,r).

d(y,r) =
1
N

N

∑
j=1

χB(y,r)(x j), (1)

where χB(y,r) is the indicator function on the set B(y,r).
For spheres B(y,r) that lie entirely within the rectangular
domain U , the fraction d(y,r) is computed as in (1). For
spheres B(y,r) that do not lie entirely within the domain
U , d(y,r) is computed as if each agent has a mirror image
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about the boundaries of the domain U . Equivalently d(y,r)
is computed as the spherical integral of the even extension
of the distribution C({x j}) defined in (4). The measure of
the set B(y,r) is given as

µ̄(y,r) =
∫

B(y,r)
µ(z)dz. (2)

The quantity µ̄(y,r) can be interpreted as the probability of
detecting an event in the set B(y,r). For uniform coverage,
we require that d(y,r)≈ µ̄(y,r) for all points y ∈U and for
all radii r. This motivates defining the following metric for
uniform coverage:

E2({x j}) =
∫ R

0

∫
U

(d(y,r)− µ̄(y,r))2 dydr, where R > 0.

(3)
This metric is difficult to numerically compute as it involves
the computation of spherical integrals at all scales. But it
turns out that this metric is equivalent to another metric based
on Fourier coefficients which is much easier to compute. This
metric is discussed in the next subsection.

B. Coverage metric based on Fourier coefficients

For convenience, we use a coverage distribution defined as

C({x j}) =
1
N

N

∑
j=1

δx j , (4)

where δx j is the Dirac delta distribution with support at the
location x j. Note that the distribution C({x j}) can be thought
of as a probability distribution. Also note that we have

d(y,r) = 〈C({x j}),χB(y,r)〉. (5)

Let { fk} be the Fourier basis functions that satisfy Neumann
boundary conditions on the rectangular domain U and k is
the corresponding wave-number vector. For instance, on a
rectangular domain U = [0,L1]× [0,L2], we have,

fk(x) =
1
hk

cos(k1x1)cos(k2x2),where

k1 =
K1π

L1
and k2 =

K2π

L2
,

for K1,K2 = 0,1,2.... and where

hk =
(∫ L1

0

∫ L2

0
cos2(k1x1)cos2(k2x2)dx1dx2

)1/2

.

(6)

The division by the factor hk ensures that fk has L2 norm
equal to one. Therefore fk is an orthonormal basis. The
Fourier coefficients of the coverage distribution are given
as

ck =
〈
C({x j}), fk

〉
=

1
N

N

∑
j=1

fk(x j). (7)

Also, the Fourier coefficients of the probability distribution
µ are written as:

µk = 〈µ, fk〉, (8)

where < ., . > is the standard inner product. We use the
Sobolev space norm of negative index (H−s, for s = (n+1)

2
and where n is the dimension of the space) to measure the

distance between the coverage distribution C({x j}) and the
probability distribution µ . This is given as

φ
2({x j}) = ‖C({x j})−µ‖H−s = ∑

K∈Z∗n
Λk|sk|2,

where sk = ck−µk, Λk =
1

(1+‖k‖2)s

and Z∗n = [0,1,2, ......]n.

(9)

The quantity ck can be thought of as the sample average of
the Fourier basis function fk over the agent positions. The
quantity µk is the spatial average of the Fourier basis function
fk with respect to the probability measure µ . The metric φ

is a weighted sum of the discrepancy between the sample
averages and the true spatial averages of the Fourier basis
functions over all wavenumbers, but with more weight given
to the small wavenumbers (or large scale modes). The two
metrics E and φ described before are equivalent. i.e., there
exist bounded constants c1,c2 such that

c1φ
2({x j})≤ E2({x j})≤ c2φ

2({x j}). (10)

The proof for the equivalence of these two metrics goes along
the same lines as described in [4]. Since the metric φ is much
easier to compute, we will use the metric φ for locational
optimization in the rest of the paper. Also the metric φ will
be referred to as the Static Spectral Multiscale Coverage
(Static SMC) metric. The qualifier term Static in Static SMC
is used to distinguish it from the SMC metric that was used
to capture the quality of dynamic coverage by a network of
agents ([3] and [4]).

III. STATIC SMC CONFIGURATIONS

The critical points of the metric φ will be referred to as
Static SMC Configurations. For convenience we define the
cost-function Φ({x j}) = 1

2 φ 2({x j}). Obviously Φ and φ have
the same critical points. Also note that the cost-function Φ is
a non-convex function of the agent locations x j. The gradient
of the cost-function Φ with respect to the agent locations are
given as:

B j({x j}) =
∂Φ

∂x j
=

1
N ∑

K
Λksk∇ fk(x j). (11)

Here, ∇ fk(x j) is the gradient of the Fourier basis function
evaluated at the agent location x j. For instance, for the basis
functions in (6), we have

∇ fk(x) =
1
hk

[
−k1sin(k1x1)cos(k2x2)
−k2cos(k1x1)sin(k2x2)

]
. (12)

Clearly, the gradient of the cost-function Φ must be zero at
the critical points. Therefore the Static SMC configurations
{x∗j} should satisfy the following set of nonlinear equations:

∑
K

Λksk∇ fk(x∗j) = 0, for all j = 1,2, ...,N, (13)

or
B j({x∗j}) = 0, for all j = 1,2, ...,N. (14)

Clearly, the Static SMC configurations depend on the prob-
ability distribution µ . Also there could be multiple Static
SMC configurations for the same µ .
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IV. GRADIENT DESCENT ALGORITHM FOR COVERAGE
CONTROL

In this section, we describe how the Static SMC config-
urations can be computed using a simple gradient descent
algorithm. We discuss only centralized implementations of
coverage algorithms in this paper. The algorithm referred to
as Static SMC can be used to deploy agents so that they
converge to one of the Static SMC configurations. Let the
agents have first-order dynamical behavior described by

ẋ j(t) = u j(t). (15)

Computing the time-derivative of the coverage measure Φ,
we get

Φ̇({x j}) =
N

∑
j=1

B j({x j(t)}) ·u j(t) (16)

We consider the coverage measure Φ as a Lyapunov function
and set the control to be

u j(t) =−K f B j({x j(t)}), (17)

where K f > 0 is a feedback gain. With this choice of control,
the time-derivative of the coverage measure Φ is guaranteed
to be non-positive. In particular

Φ̇({x j}) = Ψ({x j}) =−K f

N

∑
j=1
‖B j({x j(t)})‖2

2. (18)

By LaSalle’s principle [13], the agent configuration {x j}
converges to the largest invariant set contained in the set
Ψ−1(0). Note that the set Ψ−1(0) is the set of Static SMC
configurations. Since all the elements of the set Ψ−1(0)
are invariant to the dynamics in (15) subject to the control
(17), the agent configuration asymptotically converges to
the set of Static SMC configurations. If the set of Static
SMC configurations is finite, the solution {x j(t)} converges
asymptotically to one of the Static SMC configurations. But
we are guaranteed convergence only to a local minimum of
the coverage measure Φ.

Different variations of the control law in (17) can also be
used for coverage control. One such useful variation is the
control law where

u j(t) =

{
−umax

B j({x j(t)})
‖B j({x j(t)})‖2

if ‖B j({x j(t)})‖2 > ε

−K f B j({x j(t)}) if ‖B j({x j(t)})‖2 ≤ ε,
(19)

where umax is the maximum speed of the agent, ε is a
threshold that can be chosen and K f = umax/ε . By similar
arguments as before, the control law in (19) would result in
convergence to one of the Static SMC configurations.

A. Examples

In this section, we demonstrate the application of the Static
SMC algorithm for various scenarios. First, we make an
interesting observation that when the number of agents is
N = P2 where P is an integer and when the probability
distribution µ is a uniform distribution on a rectangular
domain U , the solution to the coverage problem is a con-
figuration with the agents placed on a rectangular grid. This

is shown by simulations shown in Figure 1 for N = 32 and
N = 42. These simulations were for the domain U = [0,1]2

and the control law in (19) was used with umax = 1.0 and
ε = 10−3. Analytically proving that these rectangular grid
configurations are indeed minimizers of the coverage metric
remains an open problem and will be the subject of future
work.

(a) N = 32

(b) N = 42

Fig. 1. Agent trajectories and Static SMC configurations obtained for a
uniform prior on a rectangular domain [0,1]× [0,1] and with N = P2. The
initial agent locations were chosen randomly.

Figure 2 illustrates the performance of the Static SMC
algorithm for a Gaussian distribution restricted to the domain
U = [−500,500]× [−500,500], and is defined as

µ(x) =
0.5
πσ2 e

−0.5
(

(x1−x̄1)2

σ2 + (x2−x̄2)2

σ2

)
(20)

where (x̄1, x̄2) = (250,250) and σ = 100. In this simulation,
the control law in (19) was used with umax = 15.0 and ε =
10−3.

Finally we illustrate an example where the objective is
to uniformly cover a rectangular domain excluding regions
covered by foliage which are represented as shaded regions
in Figure 3. The shaded regions can be thought of as areas
where there is no value in placing an agent or where there
is zero probability of detecting an event (or target). The
probability distribution µ is setup as follows. First, we define
a Terrain function as:

Ter(x) =

{
1, if x is outside foliage
0, if x is inside foliage.

(21)
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(a) Initial agent locations (b) Agent trajectories

(c) Final agent configuration

Fig. 2. Agent trajectories and Static SMC configuration obtained for
a Gaussian probability distribution and with N = 50. The green coloring
represents the Gaussian probability distribution.

Now, µ is defined as

µ(x) =
Ter(x)∫

U Ter(y)dy
. (22)

Figure 3 shows the optimal agent configuration obtained for
an irregular domain.

Fig. 3. Static SMC Configuration obtained for a uniform probability
distribution on an irregular domain and with N = 500.

V. COVERAGE CONTROL FOR DUBINS VEHICLE
DYNAMICS

A Dubins vehicle is a vehicle moving with bounded
curvature on a plane and is considered an adequate model
from the perspective of path planning of unmanned vehicles
(see [14] and [15]). The dynamics of an agent with Dubins

vehicle dynamics is described by

ẋ j = v jeiθ j

θ̇ j = ω j,
(23)

where eiθ j = (cos(θ j),sin(θ j))′ denotes the unit vector in the
direction of the vehicle heading θ j and v j is the speed of the
vehicle. Here, the controls to be chosen at each time instant
are the speeds v j and the turn-rates ω j. We assume that the
speeds and turn-rates are subject to the constraints:

0≤ v j ≤ vmax

ωmin ≤ w j ≤ wmax.
(24)

The controls are obtained by using a receding horizon
approach over a short time horizon ∆t and deriving the
feedback law in the limit as ∆t goes to zero. For details see
the Appendix (Section VII-A). The resulting control laws are
given as

v j =

{
0 if B j({x j(t)}) · eiθ j >= 0
vmax if B j({x j(t)}) · eiθ j < 0

(25)

ω j =

{
ωmin, if B j({x j(t)}) · ieiθ j >= 0
ωmax if B j({x j(t)}) · ieiθ j < 0.

(26)

The vector ieiθ j denotes the unit vector (−sin(θ j),cos(θ j))′.
An alternate interpretation of the control in (25) and (26) is
that the choice of the speed guarantees that the first time-
derivative of the coverage metric is non-positive, while the
choice of the turn-rate makes the second time-derivative of
the coverage metric as negative as possible. This can be
observed as follows. Computing the time-derivative of the
coverage measure Φ, we get

Φ̇({x j}) =
N

∑
j=1

B j({x j(t)}) · eiθ j v j (27)

Therefore choosing v j as in (25), it is guaranteed that the
first time-derivative is always non-positive. Computing the
second time-derivative of the coverage measure Φ, we get

Φ̈({x j}) =
N

∑
j=1

B j({x j(t)}) · v jieiθ j ω j +
N

∑
j=1

B j({x j(t)}) · eiθ j v̇ j

+
N

∑
j=1

Ḃ j({x j(t)}) · eiθ j v j

(28)

Therefore choosing ω j as in (26) makes the second time-
derivative as negative as possible. Figure 4 shows a sample
simulation of the coverage control for the Dubins vehicle
model with vmax = 0.5 and −ωmin = ωmax = 10. In this
example, the probability distribution µ is uniform within the
shaded region shown in Figure 4 and zero outside the shaded
region.
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Fig. 4. Trajectories obtained with Static SMC control for Dubins vehicle
model. The probability distribution µ is uniform within the shaded region
and zero outside the shaded region.

VI. COVERAGE OF BOUNDARIES

The coverage algorithm described in this paper can also be
effectively used for the uniform coverage of the boundary of
a domain or more generally, for the coverage of geometric
patterns. The problem of uniformly distributing agents on
the boundary of an envirnoment has been studied using a
different approach in [16]. The only element that needs to
be changed in the Static SMC algorithm is in the definition
of the probability distribution µ . For coverage of curves,
the probability distribution µ will be a delta-like distribution
whose support is on the curve. Let a curve be given as γ :
[a,b]→ Rn. Then the corresponding probability distribution
is given as:

µ =
1

b−a

∫ b

a
δγ(s)ds, (29)

where δγ(s) is the delta distribution with support at the loca-
tion γ(s). Note that the Fourier coefficients of the probability
distribution µ can be easily computed as:

µk =
1

b−a

∫ b

a
fk(γ(s))ds. (30)

For an elliptical curve, we can use the parametrization γell :
[0,2π]→ R2 defined as

γell(θ) =
[

x̄1 +acos(θ)
x̄2 +bsin(θ)

]
. (31)

Figure 5 shows the uniform coverage of an elliptical curve
with (x̄1, x̄2) = (0.5,0.5), a = 0.3 and b = 0.2. As a final
example, we use a variation of a curve used in the paper
[16]. Figure 6 shows the uniform coverage of a curve γp :
[0,1]→ R2 defined as

γp(θ) =
[

0.5
0.5

]
+

1
8
(2+ cos(10πθ)+0.5sin(4πθ))

[
cos(2πθ)
sin(2πθ)

]
.

(32)

For both the simulations shown in Figures 5 and 6, the
control law in (19) was used with umax = 1.0 and ε = 10−3.
For better coverage of curves, it would be desirable for the

probability distribution µ to be defined using unit speed
curves so that µ is uniform along the curve.

(a) Initial agent locations and
curve to be covered

(b) Agent trajectories and final
configuration

Fig. 5. Agent trajectories and Static SMC Configurations obtained for
coverage of an elliptical curve and with N = 15.

(a) Initial agent locations and
curve to be covered

(b) Agent trajectories and final
configuration

Fig. 6. Agent trajectories and Static SMC Configurations obtained for
coverage of the curve (32) and with N = 25.

VII. CONCLUSIONS

In this paper, we have presented a centralized algorithm
referred to as Static SMC for locational optimization of multi-
agent systems. We make use of a multiscale coverage metric
to quantify the quality of coverage by an agent network
and use gradient descent algorithms for coverage control. In
related work ([17]), we have extended the work in this paper
to develop distributed and asynchronous implementations of
the coverage algorithm.

Here it is worth mentioning and comparing Centroidal
Voronoi Tessellations (CVT) and Static SMC configurations.
Recall that for CVTs, the agent locations {x j} are obtained
by minimizing the metric,

V ({x j},{Wj}) =
N

∑
j=1

∫
Wi

f (||x j− x||)µ(x)dx, (33)

which also depends on a chosen partition {Wi} of U , and
|| · || is a Euclidean norm. Here, the non-decreasing function
f (||x j− x||) provides a quantitative assessment of how poor
the sensing performance of the sensor at x j is at point x.
It turns out that for any choice of the function f and for
a fixed agent configuration, the Voronoi partition computed
with respect to the Euclidean metric is the optimal partition
[8]. For f = ||xi− x||2, which is a very common choice for
f in locational optimization problems, CVTs are optimal
solutions. A CVT is a configuration is one in which the
centroids of the Voronoi cells (w.r.t µ) coincide with the
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generators of the Voronoi partition. A continuous time Lloyd
descent algorithm to compute the CVTs has been proposed
in [8], and is very similar to the form of the coverage control
introduced in section IV for determining the Static SMC con-
figurations. From numerical simulations, it was observed that
CVTs and Static SMC configurations are qualitatively very
similar. However, there is a very important difference. The
Static SMC algorithm does not require the computation of
any partitions at each time-step whereas the Lloyd algorithm
and its variants require computing the Voronoi partition at
every time-step. The computational complexity of the Static
SMC algorithm is O(N) as it requires only the computation
of the sample averages of the Fourier basis functions over the
agent locations. The computational complexity of the Lloyd
algorithm is O(NlogN) as the lower bound complexity for
computing the Voronoi partition is O(NlogN). Moreover,
sophisticated algorithms and data structures have to be
used for the efficient computation of the Voronoi partition.
Further theoretical and numerical investigations are required
to establish the connection between CVT and Static SMC
configurations.

APPENDIX
A. Receding horizon control for Dubins vehicle

At a given time t, let us solve the optimal control problem
over the time horizon [t, t + ∆t]. The cost-function we are
going to use is the coverage measure Φ at the end of the
horizon. i.e., we aim to drive the agents to positions with the
least value of the coverage measure subject to the dynamics
of the agents and the constraints on the control. The cost-
function that we want to minimize is given as

C(t,∆t) = Φ(t +∆t) =
1
2 ∑

K
Λks2

k(t +∆t). (34)

It is convenient to write the optimal control solution in terms
of the costate(Lagrange multipliers) and the Hamiltonian.
The dynamics of the costates are given by the costate
equations and the Hamiltonian is a function of the states,
costates and the controls. The optimal control solutions v∗j
and ω∗j are the values of the admissible controls v j and ω j
that minimize the Hamiltonian. For more details on how to
form the Hamiltonian and costate equations, see [18]. In
our notation the costates are γ j(τ) ∈Rn and σ j(τ) ∈R. The
Hamiltonian can be written as

H =
N

∑
j=1

γ j · v jeiθ j +
N

∑
j=1

σ jω j (35)

The costate equations are:

γ̇ j = −∂H
∂x j

= 0

σ̇ j = − ∂H
∂θ j

=−γ j · v jieiθ j .

(36)

The terminal constraints are
γ j(t +∆t) = B j({x j(t +∆t});
σ j(t +∆t) = 0.

(37)

The co-state values at time t upto first-order accuracy in ∆t
are given by using the terminal conditions and integrating
the costate equations for a short horizon ∆t and are given as

γ j(t) = γ j(t +∆t)− γ̇ j(t +∆t)∆t = B j({x j(t +∆t})
σ j(t) = σ j(t +∆t)− σ̇ j(t +∆t)∆t = B j({x j(t +∆t}) · v jieiθ j ∆t

Therefore, in the limit as ∆t→ 0, the optimal controls v j and
ω j that minimize the Hamiltonian are given by equations (25)
and (26).
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