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Abstract— In surveillance problems, the uncertainty in the
position of a target can be specified in terms of a probability
distribution. To reduce the average search times to detect
a target using mobile sensors, it is desirable to have the
trajectories of the sensors sample the probability distribution
uniformly. When the target is moving, the initial uncertainty
in the position of the target evolves forward in time according
to the target dynamics. We assume a model for the dynamics
of the target and build upon our previous work for stationary
targets to define appropriate metrics for uniform coverage of
the evolving probability distribution. Using these metrics, we
derive centralized feedback control laws for the motion of the
sensors so that they achieve uniform coverage of the moving
target distribution. We demonstrate the performance of the
algorithm on various scenarios.

I. INTRODUCTION

Cooperative control of mobile robotic/sensor networks is
an emerging discipline with a lot of recent research activity.
This is partly due to the various technological advances in
robotic/sensor networks, and partly due to the interesting
mathematical challenges that arise from cooperative control
problems. For working prototypes of mobile sensor networks
see [1] and [2]. The emergence of cooperative control as a
discipline can be affirmed by special journal issues dedicated
entirely to various problems in cooperative control. See
[3] and [4] for special issues presenting papers that deal
with a wide range of coordination tasks such as consensus,
connectivity maintenance, formation stabilization, coverage
and target detection. See [5] for a special issue dedicated
to coordinated control of multiple mobile, networked sensor
platforms for ocean state estimation.

In this paper, we address the problem of coverage of mov-
ing targets by multiple mobile sensors. Some representative
papers that deal with the problem of coverage/sampling are
[6], [7],[8], [9] and [10]. In our recent work ([11] and [12]),
we proposed an algorithm so that points on the trajectories of
the mobile sensors uniformly sample a stationary probability
distribution. Such an algorithm is useful when there is
uncertainty in the position of a stationary target that needs to
be detected. The uncertainty in the position of the target can
be specified in terms of a probability distribution. To reduce
the average search times to detect the target, it is desirable
that the sensor trajectories uniformly sample this probability
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distribution. In [11] and [12], we borrowed concepts from
ergodic theory to define appropriate metrics for uniformity
of coverage, and designed centralized feedback control laws
to achieve uniform coverage. In this paper, we extend the
work in [11] and [12], to define appropriate metrics for
uniform coverage when there is uncertainty in the position
of a moving target.

A system is said to exhibit ergodic dynamics if it visits
every subset of the phase space with a probability equal
to the measure of that subset. For good coverage of a
stationary target, this translates to requiring that the amount
of time spent by the mobile sensors in an arbitrary set be
proportional to the probability of finding the target in that
set. For good coverage of a dynamic target, this translates
to requiring that the amount of time spent in certain ’tube
sets’ be proportional to the probability of finding the target
in the “tube sets”. We assume a model for the motion of the
targets to construct these “tube sets” and define appropriate
metrics for coverage. (The model for the target motion can be
approximate and the dynamics of targets for which we don’t
have precise knowledge can be captured using stochastic
models). Using this metric of coverage, we derive centralized
feedback control laws for the motion of the mobile sensors.
The algorithm proposed in this paper will be referred to as
Dynamic Spectral Multiscale Coverage (DSMC).

There are many applications of mobile multi-sensor sys-
tems where it is useful to design their dynamics so that
they uniformly sample an evolving probability distribution.
A couple of such scenarios are

1) Ocean Monitoring: Autonomous ocean-sampling net-
works is an active area of research, see for exam-
ples [1], [5] and [9]. The central objective in these
projects is to collect data that best reveals the ocean
processes and dynamics. They use fleets of underwater
gliders in the ocean that take measurements of various
oceanographic fields like temperature, salinity and the
flow. The algorithm proposed in this paper can be used
to uniformly sample a moving domain advected by
the ocean flow or to detect a moving target like a
submarine whose position is uncertain.

2) Target search and tracking: For military applications
and search-and-rescue operations, detection of moving
targets using audio/video signals is an important task.
For such tasks, it is desirable that the trajectories of the
mobile sensors are such that it is difficult for a target to
evade detection by the sensors. Of particular interest is
the problem of minimizing the time for target detection
when the sensor range is very small compared to the



domain size, and when there is uncertainty in the
terrain and sensor measurements.

The rest of the paper is structured as follows. In Section
II, we present the metric that quantifies how well a set
of trajectories sample a evolving probability distribution.
In Section III, we use this metric to design dynamics (or
feedback control) for multiple sensors that move according
to either first-order dynamics or second-order dynamics.
We numerically analyze the behavior of the closed-loop
dynamics for various scenarios. In Section IV, we describe
the case where the target dynamics is uncertain. In Section
V, we apply the DSMC algorithm for deterministic target
dynamics and also consider a case when the uncertainty in
the position of the target is updated using a Kalman filter.

II. PROBLEM SETUP

First, we discuss the coverage problem when the target
dynamics is first-order and deterministic. In section IV, we
will extend this framework to account for uncertainty in
target dynamics. Let the target motion model be described
by a deterministic set of ODE’s

ż(t) = v(z(t), t), (1)

where, z(t)∈U , U ⊂R2 being the region in which the target
motion is confined to over a period [0,Tf ] of interest. Let T
be the corresponding mapping that describes the evolution
of the target position. i.e., if the target is at point z(t0) at
time t = t0, its position at time t = t f is given by

z(t f ) = T (z(t0), t0, t f ). (2)

Given a set A⊂U its inverse image under the transformation
T (., t0, t f ) is given as

T−1(., t0, t f )(A) = {y : T (y, t0, t f ) ∈ A}. (3)

The initial uncertainty in the position of the target is specified
by the probability distribution µ(0,x) = µ0(x). The uncer-
tainty in the position of the target evolves according to

µ(t,A) =
∫
A

µ(t,y)dy =
∫

T−1(.,0,t)(A)

µ0(y)dy. (4)

Throughout the paper, we use the notation such that µ(t,A)
will denote the probability measure of the set A.

Let [Pt0,t f ] be the family of Perron-Frobenius operators
corresponding to the transformations T (., t0, t f ). i.e.,∫

A

[Pt0,t f ]µ(t0,y)dy =
∫
A

µ(t f ,y)dy =
∫

T−1(.,t0,t f )(A)

µ(t0,y)dy.

(5)
In particular, we have∫

A

[P0,t ]µ0(y)dy =
∫
A

µ(t,y)dy. (6)

At time t, consider the spherical set B(x,r) with radius r and
center at x. Now consider the corresponding tube set given
as

Ht(B(x,r)) = {(y,τ) : τ ∈ [0, t] and T (y,τ, t) ∈ B(x,r)} .
(7)

Fig. 1. The tube set Ht(B(x,r)) is a subset of the extended space-time
domain and is the union of the sets T−1(.,τ, t)(B(x,r))×{τ} for all τ ∈ [0, t].
Note that there is no particular reason that the target trajectories going back
in time should diverge. They could just as well converge and then the set
of initial target conditions leading to B(x,r) could get smaller and smaller.
This still does not change the observation in (8).

The tube set Ht(B(x,r)) (See Figure 1) is a subset of
the extended space-time domain and is the union of the
sets T−1(.,τ, t)(B(x,r))×{τ} for all τ ∈ [0, t]. This tube set
can be thought of as the set of all points in the extended
space-time domain that end up in the spherical set B(x,r) at
time t when evolved forward in time according to the target
dynamics. Note that the probability of finding a target within
any time slice of the tube set is the same. i.e.,

µ(τ1,T−1(.,τ1, t)(B(x,r))) = µ(τ2,T−1(.,τ2, t)(B(x,r)))

= µ(t,B(x,r)),

for all τ1,τ2 ≤ t.
(8)

This is because none of the possible target trajectories
either leave or enter the tube set Ht(B(x,r)). Let the sensor
trajectories be x j : [0, t]→ R2 for j = 1,2, ..,N. The fraction
of the time spent by the sensor trajectories (x j(t), t) in the
tube set Ht(B(x,r)) is given as

dt(x,r) =
1

Nt

N

∑
j=1

∫ t

0
χT−1(.,τ,t)(B(x,r)) (x j(τ))dτ

=
1

Nt

N

∑
j=1

∫ t

0
χB(x,r) (T (x j(τ),τ, t))dτ.

(9)

χB(x,r) is the indicator function on the set B(x,r). It might
appear that the fraction dt(x,r) is hard to compute. But it
turns out that this fraction can be computed as the spherical
integral

dt(x,r) =
∫

B(x,r)

Ct(y)dy, (10)



of a distribution,

Ct(x) =
1

Nt

N

∑
j=1

∫ t

0
Pτ,t

δx j(τ)(x)dτ, (11)

which we refer to as the coverage distribution. Here δx0 is
the delta distribution with mass at the point x0. The coverage
distribution Ct can be thought of as the distribution of points
visited by the mobile sensors when evolved forward in time
according to the target dynamics. To see that the expression
in (10) is equal to the expression in (9), observe that

dt(x,r) =
∫

B(x,r)

Ct(y)dy =
∫

B(x,r)

[
1

Nt

N

∑
j=1

∫ t

0
Pτ,t

δx j(τ)(y)dτ

]
dy

=
1

Nt

N

∑
j=1

∫ t

0

 ∫
B(x,r)

Pτ,t
δx j(τ)(y)dy

dτ

=
1

Nt

N

∑
j=1

∫ t

0

 ∫
T−1(.,τ,t)(B(x,r))

δx j(τ)(y)dy

dτ

=
1

Nt

N

∑
j=1

∫ t

0
χT−1(.,τ,t)(B(x,r)) (x j(τ))dτ.

(12)

In Appendix B we describe a iterative procedure to numeri-
cally compute an approximation to the coverage distribution
Ct .

For certain applications (e.g. uniform sampling), it is
desirable that the fraction of the time spent by the sensor
trajectories in the tube set must be close to

µ(t,B(x,r)) =
∫

B(x,r)

µ(t,y)dy =
∫

T−1(.,0,t)(B(x,r))

µ0(y)dy. (13)

For such problems, we can use the metric

E2(t) =
∫ R

0

∫
U

(
Ct(B(x,r))−µ(t,B(x,r))

)2 dxdr, (14)

For search and tracking problems, the above metric can be
generalized to

E2(t) =
∫ R

0

∫
U

(
Ct(B(x,r))−ν(t,B(x,r))

)2 dxdr. (15)

where,

ν(t,x) = F (t,µ(t,x))/
∫

U
F (t,µ(t,x))dx. (16)

is a function of µ . For e.g. in search problems where it is
desirable that the sensors spend more time in regions where
there is higher uncertainty in the target position, F can be
taken to be

F (t,µ(t,x)) =−µ(t,x) log µ(t,x). (17)

The metric E(t) essentially compares the spherical integrals
of the distributions Ct and ν(t, .). As described in [11], [12]

and [13], E(t) is equivalent to a metric induced by a Sobolev
space norm of negative index s = (n+1)/2. i.e.,

c1‖Ct −ν(t, .)‖2
H−s ≤ E2(t)≤ c2‖Ct −ν(t, .)‖2

H−s . (18)

The Sobolev space distance can also be expressed as

φ
2(t) = ‖Ct −ν(t, .)‖2

H−s = ∑
K∈Z∗n

Λk|sk(t)|2,

where sk(t) = ck(t)−νk(t), Λk =
1

(1+‖k‖2)s

ck(t) =
〈
Ct , fk

〉
and νk(t) = 〈ν(t, .), fk〉 .

(19)

Here { fk} are the Fourier basis functions that satisfy Neu-
mann boundary conditions on the rectangular domain U and
k is the corresponding wave-number vector. For instance, on
a rectangular domain U = [0,L1]× [0,L2], we have,

fk(x) =
1
hk

cos(k1x1)cos(k2x2),where

k1 =
K1π

L1
and k2 =

K2π

L2
,

for K1,K2 = 0,1,2.... and where

hk =

(∫ L1

0

∫ L2

0
cos2(k1x1)cos2(k2x2)dx1dx2

)1/2

,

(20)

is a normalization constant.

III. FEEDBACK CONTROL DESIGN

Assume that there are N mobile sensors which evolve
either by first-order or second-order dynamics. First-order
dynamics is described by

ẋ j(t) = u j(t). (21)

For convenience, let us define the quantity

Φ(t) =
1
2

N2t2
φ

2(t) =
1
2 ∑

K
Λk|Sk(t)|2

where Sk(t) = Ntsk(t).
(22)

At any given time t, we consider the following optimal
control problem over the time horizon [t, t +∆t]. With the aim
to drive the sensors to positions which lead to the highest rate
of decay of the coverage metric, we take the cost-function to
be the first time-derivative of Φ(τ) at the end of the horizon
i.e.,

C(t,∆t) = Φ̇(t +∆t) = ∑
K

ΛkSk(t +∆t)Ṡk(t +∆t). (23)

Once we obtain the necessary conditions in terms of the two
point boundary value problem, we can derive the feedback
law in the limit as the receding horizon ∆t goes to zero. As
described in Appendix A, the feedback law takes the form

u j(t) =−umax
B j

‖B j(t)‖2
,

where B j(t) = ∑
k

ΛkSk(t)∇ fk(x j(t)).
(24)

This feedback law is such that it makes the second time-
derivative of Φ(t) as negative as possible. We note that the



controls u j(t) have no direct influence on the first time-
derivative φ̇(t) and it may not be possible to make φ̇(t)
negative. For the second-order sensor dynamics,

ẍ j(t) = u j(t), (25)

we take the cost to be of the form

C(t,∆t) = Φ̇(t +∆t)+
c
2

∫ t+∆t

t

N

∑
j=1

v j(τ) · v j(τ)dτ

= ∑
K

ΛkSk(t +∆t)Ṡk(t +∆t)

+
c
2

∫ t+∆t

t

N

∑
j=1

v j(τ) · v j(τ).

(26)

where, the additional term accounts for the time-integral of
the kinetic energy of the sensors. The parameter c determines
how much the kinetic energy is penalized relative to cover-
age. Using a similar receding horizon approach, as described
for the first-order sensor dynamics above, we obtain the
feedback law as

u∗j(t) =−Fmax
(cv j(t)+B j(t))
‖cv j(t)+B j(t)‖2

,

where B j(t) =

[
∑
K

ΛkSk(t)∇ fk(x j(t))

]
.

(27)

IV. DSMC WITH STOCHASTIC TARGET DYNAMICS

Let the target dynamics evolve according to a stochastic
differential equation [14],

dz(t) = v(z(t), t)dt +b(z(t), t)dβ (t,ω)dt. (28)

where, β (t,ω) :R×Ω→R is the standard Brownian motion.
Here (Ω,A ,P) is probability space whose event space is
Ω, and is equipped with σ− algebra A and a probability
measure P . The corresponding transformation that describes
the evolution of the target can be represented as

z(t f ) = T (z(t0), t0, t f ,ω), (29)

which is parameterized by the realization ω . Hence, we have
a tube set (7) corresponding to each realization of the ω . The
average value of the fraction of time spent in these tube sets
is given as an expectation. i.e.

dt(x,r) = EP

[
1

Nt

N

∑
j=1

∫ t

0
χB(x,r) (T (x j(τ),τ, t,ω))dτ

]
.

(30)

Consider the family of stochastic Perron-Frobenius op-
erators (see [15]) corresponding to the transformations
T (z(t0), t0, t f ,ω), which is given as

∫
A

[Pt0,t f ]ν(t0,y)dy = EP

∫
U

ν(t0,y).χA
(
T (y, t0, t f ,ω)

)
dy

 .
(31)

Just as the case for deterministic dynamics, the fraction
dt(x,r) is given as a spherical integral of the coverage
distribution as defined in (11) i.e.,

dt(x,r) =
∫

B(x,r)

Ct(y)dy =
∫

B(x,r)

[
1

Nt

N

∑
j=1

∫ t

0
Pτ,t

δx j(τ)(y)dτ

]
dy

=
1

Nt

N

∑
j=1

∫ t

0

 ∫
B(x,r)

Pτ,t
δx j(τ)(y)dy

dτ

=
1

Nt

N

∑
j=1

∫ t

0
EP

∫
U

δx j(τ)(y).χB(x,r) (T (y,τ, t,ω))dy

dτ

= EP

[
1

Nt

N

∑
j=1

∫ t

0
χB(x,r) (T (x j(τ),τ, t,ω))dτ

]
.

(32)

Just as described in the previous sections, we can use the
Sobolev space distance between Ct(.) and ν(, t) as a metric
for coverage and design the feedback control.

V. EXAMPLES WITH FIRST ORDER SENSOR DYNAMICS

In this section we consider two examples involving cov-
erage of moving targets, one with known and the other with
uncertain dynamics. We assume that the sensor dynamics is
first order in both the cases.

A. Deterministic target dynamics

In the first example, we take the target motion to be
deterministic, such that it moves towards a central point
with a known fixed speed. The initial uncertainty in the
target position is uniformly distributed in a ring of finite size
centered around the origin. The target dynamics is given as:

ż = vmax
(zc− z)
‖zc− z‖2

, (33)

vmax is the constant speed of the target and zc is the
central location towards which the target is moving. For this
example, we use the metric as defined in (14). The feedback
law as described in (24) is used and the resulting dynamics
can be seen in Figure 2. The decay of the coverage metric
E2(t) with time can be seen in Figure 3.

B. Uncertain target dynamics: DSMC coupled with a
Kalman filter

Consider M identical targets moving independently of each
other in R2 with uncertain dynamics. We assume that the
sensors can observe the targets when they fall within their
sensing range. In order to incorporate observation dynamics,
it is natural to represent the target dynamics in discrete time
as:

zi
h = Fzi

h−1 +Gwh, (34)

where, i = 1, · · · ,M, zi
h = zi(th) ∈ Rn is the i−th target state

at time th, wh ∈ Rn is process noise which is assumed to
be drawn from a zero mean multivariate normal distribution



(a) Time,t=0.0 (b) Time,t=0.6

(c) Time,t=1.2 (d) Time,t=1.8

Fig. 2. Snapshots at various times of the sensor trajectories generated
by the DSMC algorithm with first-order dynamics. The dynamics of the
target is such that it moves toward a central point with a constant speed.
The initial prior probability distribution is a uniform distribution on a ring
of finite width. The grey blob in the pictures above represent the evolving
uncertainty in the position of the moving target.

with covariance Qh, i.e w ∼N (0,Qh). When the target is
observed, the observation follows the model:

yi
h = Hzi

h +vh, (35)

where, vh is the observation noise which is assumed to be
zero mean Gaussian white noise with covariance Rh, i.e. vh∼
N (0,Rh). Given the linear dynamics with additive white
Gaussian noise and appropriate independence assumptions,
the conditional probability density evolves as a multivariate
Gaussian [16], i.e.

zi
h ∼N (zi

h|h,P
i
h|h), (36)

where, zi
h|h is the state mean and Pi

h|h is its covariance. When
the i−th target is observed, the state prediction and covari-
ance update equations are given by the standard Kalman
equations ([16])

zi
h|(h−1) = Fzi

(h−1)|(h−1),

Pi
h|(h−1) = FPi

(h−1)|(h−1)(F)T +GQh(G)T ,

Ki
h = Pi

h|(h−1)H
T (HPi

h|(h−1)H
T +Rh)

−1,

Pi
h|h = (In×n−Ki

hH)Pi
h|(h−1),

zi
h|h = zi

h|(h−1)+Ki
h(y

i
h−Hzi

h|(h−1)),

where, the superscript T denotes the transpose and In×n is a
n×n identity matrix. When the i−th target is not observed,
the update equations comprises only of the prediction step,

Fig. 3. Decay of the coverage metric E2(t) with time on a log-log scale
for the example in Section V-A

i.e.

zi
h|h = Fzi

(h−1)|(h−1),

Pi
h|h = FPi

(h−1)|(h−1)(F)T +GQh(G)T .

We shall denote by zi
0|0 and Pi

0|0, the mean and covariance,
respectively associated with the initial prior. The initial prior

µ
i
0(x) = G (x;zi

0|0,P
i
0|0), (37)

evolves based on the observation process as described above
such that

µ
i
h(x) = G (x;zi

h|h,P
i
h|h), (38)

where, G (x;x,Σ) is a multivariate Gaussian with mean x and
covariance matrix Σ. In order to design coverage dynamics
so that the sensor spends more time in regions where there
is higher uncertainty in the target position, we take ν in the
search metric (15) to be

ν(th,x) =
M

∑
i=1

F (µ i
h(x))/

∫
U

M

∑
i=1

F (µ i
h(x))dx (39)

where F is defined in (17). Note that in regions where there
is either very low or very high probability of finding the
target, ν(th,x) assumes lower values; hence sensors do not
spend much time there, and are driven in regions where the
target position uncertainty is higher. The DSMC algorithm
couples with the Kalman filter by using the probability
distribution (39), to compute the feedback law in (24).

For simulation study we assume all targets follow first
order dynamics (34), with zi

k being the position vector in
R2, F = I2×2 + A∆T , A = diag{a,a}, G = I2×2∆T , and
∆T is the sampling time. We take M = 10 targets with
a = 0.0015, G = 0.2I2×2, i = 1 · · · ,10. The targets have
different initial positions and exhibit diverging dynamics.
The initial target position uncertainty is a Gaussian, and
evolves forward in time according to the Kalman filter Eqs.
(37) or Eqs. (37), depending on whether or not the target is
observed by any of the sensors. We consider N = 2 sensors



(a) Time,t=12.5 (b) Time,t=87.5

(c) Time,t=162.5 (d) Time,t=237.5

(e) Time,t=312.5 (f) Time,t=387.5

Fig. 4. Snapshots at various times of the evolving target position
uncertainty (grey blobs), and sensor trajectories (red and blue curves)
generated by the DSMC algorithm with first-order dynamics. The targets
have diverging dynamics. The initial target position uncertainty for each
target is a Gaussian, and evolves forward in time according to the Kalman
filter.

with a sensing range of 10 meters, and assume that the
sensors can directly measure the position of target so that
H =I2×2 with a measurement noise covariance of 0.1I2×2.
We take the maximum sensor speed to be umax = 5m/sec,
which corresponds roughly to be 30 orders of magnitude
faster than maximum speed that targets attain.

Figure 4 shows snapshots at various times of the evolving
target position uncertainty (grey blobs), and sensor trajecto-
ries (red and blue curves) generated by the DSMC algorithm
with first-order dynamics. Figure 5 shows the evolution
of the trace of error covariance for three targets (other
targets show similar patterns). As can be seen, the trace of
error covariance increases monotonically until the target is
observed, at which point there is a sharp drop. Also note that
the trace of error covariance remains bounded, showing that
we achieve good coverage, and no target is lost. Note that
the error covariance won’t remain bounded forever. Since the
targets are diverging, the sensors have bounded speed and the
number of targets is more than the number of sensors, the
estimation of the Kalman filter will diverge at some point.
Our objective is just to maximize the time within which all
the targets are tracked reasonably well.

Fig. 5. Trace of error covariance for three different targets as a function of
time (all the targets show similar patterns). The trace of the error covariance
increases monotonically until the target is observed, at which point there is
a sharp drop. The trace of the error covariance remains bounded showing
that we achieve good coverage and no target is lost.

VI. CONCLUSIONS

In this paper we have extended the coverage metric
introduced in [11] and [12] to a dynamic setting where the
initial target prior evolves over time. The metric captures the
discrepancy between the distribution of points visited by the
mobile sensors when evolved forward in time according to
the target dynamics with the time dependent target distri-
bution. Using this metric, we derived centralized feedback
control laws for the mobile sensors with first and second
order dynamics, so that they can achieve uniform coverage of
the moving target distribution with known target dynamics.
We also extended this to the case when the target dynamics is
uncertain. Various numerical simulations have demonstrated
the effectiveness of the algorithm. These examples were
restricted to the case where target motion can be described
by first order dynamics, and all targets follow same motion
model.

Proving convergence and limitations of the DSMC algo-
rithm is an open and challenging problem. In particular, it is
of interest to know what assumptions on the target motion
are required so that the coverage metric converges to zero.
In the future it is also desirable to extend the DSMC frame-
work to deal with higher order target dynamics, to account
for heterogeneity in their dynamics and incorporate target
prioritization in the coverage metric. Taking into account a
longer time horizon while deriving the feedback law and
modifications of the algorithm to achieve decentralization in
the case when there is limited communication between agents
are some other possible directions to pursue in the future.
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APPENDIX

A. Feedback control design

For convenience, let us define the following quantities

Dt = NtCt ,

Φ(t) =
1
2

N2t2
φ

2(t) =
1
2 ∑

K
Λk|Sk(t)|2

where Sk(t) =Ck(t)−Mk(t),

Ck(t) = Ntck(t) and Mk(t) = Ntνk(t).

(40)

Note that Ck(t) is given as

Ck(t) =
〈
Dt , fk

〉
=

〈
N

∑
j=1

∫ t

0
Pτ,t

δx j(τ)(.)dτ, fk(.)

〉

=
N

∑
j=1

∫ t

0

〈
Pτ,t

δx j(τ)(.), fk(.)
〉

dτ

=
N

∑
j=1

∫ t

0

〈
δx j(τ)(.),K

τ,t fk(.)
〉

dτ,

(41)

where Kτ,t = [Pτ,t ]∗ is the adjoint of the Perron-Frobenius
operator Pτ,t (see [15] for details). It is well known that
the adjoint of the Perron-Frobenius operator is the Koopman
operator given as

Kτ,t fk(y) = fk(T (y,τ, t)). (42)

Thus, we have

Ck(t) =
N

∑
j=1

∫ t

0

〈
δx j(τ)(.), fk(T (.,τ, t))

〉
dτ

=
N

∑
j=1

∫ t

0
fk(T (x j(τ),τ, t))dτ.

(43)

The first time-derivative of Ck(t) is given as

Ċk(t) =
N

∑
j=1

∫ t

0

∂

∂ t
fk(T (x j(τ),τ, t))dτ +

N

∑
j=1

fk(x j(t))

=
N

∑
j=1

∫ t

0
∇ fk(T (x j(τ),τ, t)) · v(T (x j(τ),τ, t), t)dτ

+
N

∑
j=1

fk(x j(t)).

(44)

Now, the second time-derivative of Ck(t) is given as

C̈k(t) =
N

∑
j=1

∫ t

0

∂

∂ t
∇ fk(T (x j(τ),τ, t)) · v(T (x j(τ),τ, t), t)dτ

+
N

∑
j=1

∇ fk(x j(t)) · v(x j(t), t)+
N

∑
j=1

∇ fk(x j(t)) ·u j(t).

(45)

Note that the second time-derivative of Φ(t) is given as

Φ̈(t) = ∑
K

Λk
(
Ṡk(t)

)2
+∑

K
ΛkSk(t)S̈k(t)

= ∑
K

Λk
(
Ċk(t)− Ṁk(t)

)2
+∑

K
ΛkSk(t)

(
C̈k(t)− M̈k(t)

)
(46)

After we plug in the expressions for Ċk(t) and C̈k(t) in the
above expression, we shall see that the only term influenced
by the controls u j(t) is

U(t) = ∑
K

ΛkSk(t)

[
N

∑
j=1

∇ f (x j(t) ·u j(t)

]

=
N

∑
j=1

B j(t) ·u j(t)

where B j(t) = ∑
K

ΛkSk(t)∇ f (x j(t)).

(47)

Thus, the controls u j(t) that makes Φ̈(t) (or U(t)) as negative
as possible is

u j(t) =−umax
B j(t)
‖B j(t)‖2

. (48)

B. Numerical computation of the coverage distribution
Consider the distribution without the time-averaging given

as

Dt(x) = NtCt(x) =
N

∑
j=1

∫ t

0
Pτ,t

δx j(τ)(x)dτ. (49)

At a given time t the distribution Dt+∆t at time t +∆t is
computed as

Dt+∆t(x) =
N

∑
j=1

∫ t+∆t

0
Pτ,t+∆t

δx j(τ)(x)dτ

=
N

∑
j=1

∫ t

0
Pτ,t+∆t

δx j(τ)(x)dτ +
N

∑
j=1

∫ t+∆t

t
Pτ,t+∆t

δx j(τ)(x)dτ

=
N

∑
j=1

∫ t

0
Pt,t+∆tPτ,t

δx j(τ)(x)dτ +
N

∑
j=1

∫ t+∆t

t
Pτ,t+∆t

δx j(τ)(x)dτ

= Pt,t+∆t

[
N

∑
j=1

∫ t

0
Pτ,t

δx j(τ)(x)dτ

]
+

N

∑
j=1

∫ t+∆t

t
Pτ,t+∆t

δx j(τ)(x)dτ

= Pt,t+∆tDt(x)+
N

∑
j=1

∫ t+∆t

t
Pτ,t+∆t

δx j(τ)(x)dτ

(50)

Assuming small ∆t, the second term on the right hand side
can be approximated giving

Dt+∆t(x)≈ Pt,t+∆tDt(x)+Pt,t+∆t
N

∑
j=1

δx j(t)(x)∆t

= Pt,t+∆t

[
Dt(x)+

N

∑
j=1

δx j(t)(x)∆t

]
.

(51)

Thus by approximating the Perron-Frobenius operator Pt,t+∆t

at each time-step, we can approximate Dt+∆t . The Perron-
Frobenius operator Pt,t+∆t is approximated as in the set-
oriented numerical methods by [17].
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